
7 Introduction to Bayesian statistics 
 

 
This chapter introduces Bayesian statistics, Markov chain Monte Carlo 

(MCMC) techniques, and integrated nested Laplace approximations 
(INLA). We will keep the explanations simple and conceptual. However, 
some sections do contain some mathematics. We marked them with an 
asterisk ‘*’. If you are not interested in the underlying mathematics, then 
you can skip these sections, or just read the summaries in the ‘owl notes’.   
 

 

Prerequisite for this chapter: A working knowledge of R 
and linear regression is required. 

7.1 Why go Bayesian? 
The use of Bayesian techniques can be motivated in different ways. 

Some scientists start by arguing that they have prior knowledge, and that 
this prior knowledge should be incorporated into the models. In Chapter 3 
we analysed osprey data; eggshell thickness was modelled as a function of 
DDD. You don’t need to be a scientist in order to know that a breakdown 
product of a pesticide is bad for ospreys. Why would you not use this 
knowledge (which essentially translates as a negative slope for DDD) in 
the models? Using prior knowledge during the analysis then immediately 
leads to other scientists criticising Bayesian-based approaches because 
(according to them) using prior knowledge means that the models are not 
objective anymore.  

Another angle of motivating Bayesian approaches is to first criticise 
frequentist approaches and then show how useful the output from 
Bayesian techniques is. The criticism is about the interpretation of 
frequentist confidence intervals and p-values. Their interpretation goes via 
a statement like ‘if we were to repeat the experiment a large number of 
times, then in 5% of the cases we would expect to find an even larger t-
value’. This is a statement based on fictive data. In reality we are not 
repeating an experiment. What we would like to say from our results is 
that there is a 95% probability that a regression parameter is between a 
and b. This is wishful thinking for a frequentist scientist, but it is reality 
for a Bayesian analyst.  

Figure 7.1 contains the so-called posterior distribution of a regression 
parameter. Pay special attention to the word ‘distribution’ in the previous 
sentence. In a Bayesian analysis we assume that the parameters are 
unknown stochastic quantities, and we estimate their distribution using the 
data (resulting in a picture like Figure 7.1). In a Bayesian analysis we end 
up with the probability of a parameter given the data (written as  P(β | 
data)), whereas in a frequentist analysis we look at the probability of the 
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data given the parameters (written as P(data | β)). In other words, in a 
frequentist analysis we assume there is only one β and the analysis gives 
us an estimate plus a 95% confidence interval. The P(data | β) tells us how 
likely (or unlikely) the data are, given the betas. In a Bayesian analysis 
there is no fixed value for β. 

Both arguments for using Bayesian statistics will probably not convince 
the scientist with a frequentist background, who has limited time available, 
doesn’t like programming, and sees colleagues publishing papers with p-
values smaller than 0.05. And Bayesian analysis doesn’t even give you p-
values!  

We decided to base our motivation to convince the reader to adopt 
Bayesian techniques on another argument: You have no choice. The 
reason that you are reading this book is most likely because you have data 
with a spatial and / or temporal dependency structure. The packages in R 
that can cope with such data are rather limited. To take full advantage of 
spatial and temporal models we need tools that allow us to fit such models. 
At the time of this writing the majority of these tools require Bayesian 
statistics.  

  
Figure 7.1. Posterior distribution of the regression parameter β .  

7.2 General probability rules 
We begin by reviewing some basic probability rules. Let P(A) be the 

probability of an event A and P(B) the probability of an event B. Define 
the joint probability P(A and B) as the probability that events A and B both 
occur. The following basic probability rule holds. 
 




