Course format:
- Self-study course.
- On-demand access to all video content online within a 12-month period.
- Daily interaction on the Discussion Board for detailed questions.
- Live chat for quick queries.
- Course fee includes a 1-hour video chat with instructors for personalized questions and data assistance.
Course content
We begin with an introduction how to add dependency to regression models using frequentist tools. After discussing the limitations of this approach we switch to Bayesian techniques. R-INLA is used to implement regression models, generalised linear models (GLM), and generalised linear mixed-effects models (GLMM) with spatial dependency.
We will also explain how to deal with dependency around islands and fjords (barrier models). We will use geostatistical data and areal data.
All exercises are executed in R-INLA.
Detailed outline
Module 1 consists of 5 on-demand videos
- General introduction.
- Theory presentation on adding dependency to a regression model using frequentist techniques: Temporal correlation, spatial correlation and mixed-effects models.
- One exercise.
- Short introduction to mixed effects models.
- One exercise on linear mixed effects models.
Module 2 consists of 5 on-demand videos
- Brief introduction to Bayesian analysis.
- Conjugate priors.
- Diffuse versus informative priors.
- Theory presentation on INLA.
- Exercise showing how to execute a linear regression model in R-INLA.
Module 3 consists of 4 on-demand videos
- Exercise showing how to execute a linear mixed-effects model in R-INLA.
- Exercise showing how to execute a Poisson GLM in R-INLA.
- Exercise showing how to execute a negative binomial GLM in R-INLA.
- Exercise showing how to execute a Bernoulli GLM in R-INLA.
Module 4 consists of 3 on-demand video files
- Theory presentation on adding spatial correlation to regression models in R-INLA.
- Exercise showing how to add spatial correlation to a linear regression model.
- Exercise showing how to add spatial correlation to a Poisson GLM.
Module 5 consists of 4 on-demand video files
- Exercise showing how to add spatial correlation to a negative binomial GLM.
- Exercise showing how to add spatial correlation to a Bernoulli GLM.
- Exercise showing how to add spatial correlation to a gamma GLM.
- Exercise showing how to add spatial correlation to a beta GLM.
Module 6 consists of 3 on-demand video files
- Theory presentation on barrier models for dealing with islands and fjords.
- Two exercises showing how to implement the barrier model.
Module 7 consists of 3 on-demand video files
- Theory presentation on the analysis of lattice and areal data.
- Exercise showing how to use the CAR correlation with a Poisson GLM.
See also: https://courses.highstat.com/index.php/online-glm-spatial-correlation
Course material
Pdf files of all presentations are provided. These files are based on various chapters from:
- Zuur, Ieno, Saveliev (2017). Beginner's Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA.
This book is exclusively available from www.highstat.com. This book is not included in the course fee. The course can be followed without purchasing this book.
Pre-required knowledge
Good knowledge of R, data exploration, linear regression and GLM (Poisson, negative binomial, Bernoulli). Working knowledge of mixed-effects models. Short revisions are provided. This is a non-technical course.